Cargando…
Land Cover Classification Based on Airborne Lidar Point Cloud with Possibility Method and Multi-Classifier
As important geospatial data, point cloud collected from an aerial laser scanner (ALS) provides three-dimensional (3D) information for the study of the distribution of typical urban land cover, which is critical in the construction of a “digital city”. However, existing point cloud classification me...
Autores principales: | Zhao, Danjing, Ji, Linna, Yang, Fengbao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648668/ https://www.ncbi.nlm.nih.gov/pubmed/37960542 http://dx.doi.org/10.3390/s23218841 |
Ejemplares similares
-
Point Density Variations in Airborne Lidar Point Clouds
por: Petras, Vaclav, et al.
Publicado: (2023) -
Integrated Airborne LiDAR Data and Imagery for Suburban Land Cover Classification Using Machine Learning Methods
por: Mo, You, et al.
Publicado: (2019) -
Airborne LiDAR point cloud classification using PointNet++ network with full neighborhood features
por: Nong, Xingzhong, et al.
Publicado: (2023) -
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
por: Liu, Maohua, et al.
Publicado: (2020) -
A fast and robust interpolation filter for airborne lidar point clouds
por: Chen, Chuanfa, et al.
Publicado: (2017)