Cargando…
Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes
In this study, we report the cytotoxicity of a newly synthesized Schiff base HL ((E)-2-ethoxy-6((pyren-1-ylimino)methyl)phenol) and its derived metal complexes (Zn(II), Cu(II), Co(II), Cr(III), and Fe(III)) along with their structural characterizations by means of elemental analysis, magnetic moment...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648749/ https://www.ncbi.nlm.nih.gov/pubmed/37959772 http://dx.doi.org/10.3390/molecules28217352 |
_version_ | 1785135412413464576 |
---|---|
author | Aazam, Elham S. Majrashi, Maryam A. |
author_facet | Aazam, Elham S. Majrashi, Maryam A. |
author_sort | Aazam, Elham S. |
collection | PubMed |
description | In this study, we report the cytotoxicity of a newly synthesized Schiff base HL ((E)-2-ethoxy-6((pyren-1-ylimino)methyl)phenol) and its derived metal complexes (Zn(II), Cu(II), Co(II), Cr(III), and Fe(III)) along with their structural characterizations by means of elemental analysis, magnetic moment, molar conductance, IR, UV-Vis, ESR, and mass spectrometry. The single X-ray diffraction of the HL shows that it exists in the phenol-imine form in its solid state. The NMR and IR data indicate that the bidentate binding of the Schiff base ligand with the metal center occurs during complexation through the azomethine nitrogen atom and the hydroxyl group oxygen atom of the 3-ethoxy salicylaldehyde. The electronic spectra and magnetic measurements indicate that the Co(II) complex has a tetrahedral geometry and that the Cr(III) and Fe(III) complexes have a distorted octahedral geometry. The ESR and electronic spectra suggest that the Cu(II) complex has a distorted tetrahedral geometry. The cytotoxic effects of the HL and all of the metal complexes were studied using human breast cancer (MCF-7) cells. The Cu(II) and Zn(II) complexes exhibited the highest activity against the tested cell line, with IC(50) values of 5.66 and 12.74 μg/mL, respectively, and their activity was higher than that of the fluorouracil cancer drug against the MCF-7 cells (18.05 μg/mL). |
format | Online Article Text |
id | pubmed-10648749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106487492023-10-30 Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes Aazam, Elham S. Majrashi, Maryam A. Molecules Article In this study, we report the cytotoxicity of a newly synthesized Schiff base HL ((E)-2-ethoxy-6((pyren-1-ylimino)methyl)phenol) and its derived metal complexes (Zn(II), Cu(II), Co(II), Cr(III), and Fe(III)) along with their structural characterizations by means of elemental analysis, magnetic moment, molar conductance, IR, UV-Vis, ESR, and mass spectrometry. The single X-ray diffraction of the HL shows that it exists in the phenol-imine form in its solid state. The NMR and IR data indicate that the bidentate binding of the Schiff base ligand with the metal center occurs during complexation through the azomethine nitrogen atom and the hydroxyl group oxygen atom of the 3-ethoxy salicylaldehyde. The electronic spectra and magnetic measurements indicate that the Co(II) complex has a tetrahedral geometry and that the Cr(III) and Fe(III) complexes have a distorted octahedral geometry. The ESR and electronic spectra suggest that the Cu(II) complex has a distorted tetrahedral geometry. The cytotoxic effects of the HL and all of the metal complexes were studied using human breast cancer (MCF-7) cells. The Cu(II) and Zn(II) complexes exhibited the highest activity against the tested cell line, with IC(50) values of 5.66 and 12.74 μg/mL, respectively, and their activity was higher than that of the fluorouracil cancer drug against the MCF-7 cells (18.05 μg/mL). MDPI 2023-10-30 /pmc/articles/PMC10648749/ /pubmed/37959772 http://dx.doi.org/10.3390/molecules28217352 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Aazam, Elham S. Majrashi, Maryam A. Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title | Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title_full | Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title_fullStr | Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title_full_unstemmed | Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title_short | Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes |
title_sort | novel schiff base derived from amino pyrene: synthesis, characterization, crystal structure determination, and anticancer applications of the ligand and its metal complexes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648749/ https://www.ncbi.nlm.nih.gov/pubmed/37959772 http://dx.doi.org/10.3390/molecules28217352 |
work_keys_str_mv | AT aazamelhams novelschiffbasederivedfromaminopyrenesynthesischaracterizationcrystalstructuredeterminationandanticancerapplicationsoftheligandanditsmetalcomplexes AT majrashimaryama novelschiffbasederivedfromaminopyrenesynthesischaracterizationcrystalstructuredeterminationandanticancerapplicationsoftheligandanditsmetalcomplexes |