Cargando…
SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking
Due to high maneuverability as well as hardware limitations of Unmanned Aerial Vehicle (UAV) platforms, tracking targets in UAV views often encounter challenges such as low resolution, fast motion, and background interference, which make it difficult to strike a compatibility between performance and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648809/ https://www.ncbi.nlm.nih.gov/pubmed/37960366 http://dx.doi.org/10.3390/s23218666 |
_version_ | 1785135426731769856 |
---|---|
author | Hu, Xiuhua Zhao, Jing Hui, Yan Li, Shuang You, Shijie |
author_facet | Hu, Xiuhua Zhao, Jing Hui, Yan Li, Shuang You, Shijie |
author_sort | Hu, Xiuhua |
collection | PubMed |
description | Due to high maneuverability as well as hardware limitations of Unmanned Aerial Vehicle (UAV) platforms, tracking targets in UAV views often encounter challenges such as low resolution, fast motion, and background interference, which make it difficult to strike a compatibility between performance and efficiency. Based on the Siamese network framework, this paper proposes a novel UAV tracking algorithm, SiamHSFT, aiming to achieve a balance between tracking robustness and real-time computation. Firstly, by combining CBAM attention and downward information interaction in the feature enhancement module, the provided method merges high-level and low-level feature maps to prevent the loss of information when dealing with small targets. Secondly, it focuses on both long and short spatial intervals within the affinity in the interlaced sparse attention module, thereby enhancing the utilization of global context and prioritizing crucial information in feature extraction. Lastly, the Transformer’s encoder is optimized with a modulation enhancement layer, which integrates triplet attention to enhance inter-layer dependencies and improve target discrimination. Experimental results demonstrate SiamHSFT’s excellent performance across diverse datasets, including UAV123, UAV20L, UAV123@10fps, and DTB70. Notably, it performs better in fast motion and dynamic blurring scenarios. Meanwhile, it maintains an average tracking speed of 126.7 fps across all datasets, meeting real-time tracking requirements. |
format | Online Article Text |
id | pubmed-10648809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106488092023-10-24 SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking Hu, Xiuhua Zhao, Jing Hui, Yan Li, Shuang You, Shijie Sensors (Basel) Article Due to high maneuverability as well as hardware limitations of Unmanned Aerial Vehicle (UAV) platforms, tracking targets in UAV views often encounter challenges such as low resolution, fast motion, and background interference, which make it difficult to strike a compatibility between performance and efficiency. Based on the Siamese network framework, this paper proposes a novel UAV tracking algorithm, SiamHSFT, aiming to achieve a balance between tracking robustness and real-time computation. Firstly, by combining CBAM attention and downward information interaction in the feature enhancement module, the provided method merges high-level and low-level feature maps to prevent the loss of information when dealing with small targets. Secondly, it focuses on both long and short spatial intervals within the affinity in the interlaced sparse attention module, thereby enhancing the utilization of global context and prioritizing crucial information in feature extraction. Lastly, the Transformer’s encoder is optimized with a modulation enhancement layer, which integrates triplet attention to enhance inter-layer dependencies and improve target discrimination. Experimental results demonstrate SiamHSFT’s excellent performance across diverse datasets, including UAV123, UAV20L, UAV123@10fps, and DTB70. Notably, it performs better in fast motion and dynamic blurring scenarios. Meanwhile, it maintains an average tracking speed of 126.7 fps across all datasets, meeting real-time tracking requirements. MDPI 2023-10-24 /pmc/articles/PMC10648809/ /pubmed/37960366 http://dx.doi.org/10.3390/s23218666 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Xiuhua Zhao, Jing Hui, Yan Li, Shuang You, Shijie SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title | SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title_full | SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title_fullStr | SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title_full_unstemmed | SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title_short | SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking |
title_sort | siamhsft: a siamese network-based tracker with hierarchical sparse fusion and transformer for uav tracking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648809/ https://www.ncbi.nlm.nih.gov/pubmed/37960366 http://dx.doi.org/10.3390/s23218666 |
work_keys_str_mv | AT huxiuhua siamhsftasiamesenetworkbasedtrackerwithhierarchicalsparsefusionandtransformerforuavtracking AT zhaojing siamhsftasiamesenetworkbasedtrackerwithhierarchicalsparsefusionandtransformerforuavtracking AT huiyan siamhsftasiamesenetworkbasedtrackerwithhierarchicalsparsefusionandtransformerforuavtracking AT lishuang siamhsftasiamesenetworkbasedtrackerwithhierarchicalsparsefusionandtransformerforuavtracking AT youshijie siamhsftasiamesenetworkbasedtrackerwithhierarchicalsparsefusionandtransformerforuavtracking |