Cargando…

Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer

The electroretinogram (ERG) is a clinical test that records the retina’s electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of ret...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulyabin, Mikhail, Zhdanov, Aleksei, Dolganov, Anton, Ronkin, Mikhail, Borisov, Vasilii, Maier, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648817/
https://www.ncbi.nlm.nih.gov/pubmed/37960427
http://dx.doi.org/10.3390/s23218727
Descripción
Sumario:The electroretinogram (ERG) is a clinical test that records the retina’s electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work.