Cargando…
Multi-Cat Monitoring System Based on Concept Drift Adaptive Machine Learning Architecture
In multi-cat households, monitoring individual cats’ various behaviors is essential for diagnosing their health and ensuring their well-being. This study focuses on the defecation and urination activities of cats, and introduces an adaptive cat identification architecture based on deep learning (DL)...
Autores principales: | Cho, Yonggi, Song, Eungyeol, Ji, Yeongju, Yang, Saetbyeol, Kim, Taehyun, Park, Susang, Baek, Doosan, Yu, Sunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648833/ https://www.ncbi.nlm.nih.gov/pubmed/37960551 http://dx.doi.org/10.3390/s23218852 |
Ejemplares similares
-
Adaptive Online Sequential ELM for Concept Drift Tackling
por: Budiman, Arif, et al.
Publicado: (2016) -
Database Architecture for the Calibrartion of Atlas Monitored Drift Tube Chambers
por: Bagnaia, P., et al.
Publicado: (2008) -
Forecasting patient flows with pandemic induced concept drift using explainable machine learning
por: Susnjak, Teo, et al.
Publicado: (2023) -
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
por: Ortíz Díaz, Agustín, et al.
Publicado: (2015) -
Measuring the Effectiveness of Adaptive Random Forest for Handling Concept Drift in Big Data Streams
por: AlQabbany, Abdulaziz O., et al.
Publicado: (2021)