Cargando…
Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine
The human brain can be seen as one of the most powerful processors in the world, and it has a very complex structure with different kinds of signals for monitoring organics, communicating to neurons, and reacting to different information, which allows large developments in observing human sleeping,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649020/ https://www.ncbi.nlm.nih.gov/pubmed/37960675 http://dx.doi.org/10.3390/s23218976 |
_version_ | 1785135472026058752 |
---|---|
author | Lyu, Songyang Cheung, Ray C. C. |
author_facet | Lyu, Songyang Cheung, Ray C. C. |
author_sort | Lyu, Songyang |
collection | PubMed |
description | The human brain can be seen as one of the most powerful processors in the world, and it has a very complex structure with different kinds of signals for monitoring organics, communicating to neurons, and reacting to different information, which allows large developments in observing human sleeping, revealing diseases, reflecting certain motivations of limbs, and other applications. Relative theory, algorithms, and applications also help us to build brain-computer interface (BCI) systems for different powerful functions. Therefore, we present a fast-reaction framework based on an extreme learning machine (ELM) with multiple layers for the ElectroEncephaloGram (EEG) signals classification in motor imagery, showing the advantages in both accuracy of classification and training speed compared with conventional machine learning methods. The experiments are performed on software with the dataset of BCI Competition II with fast training time and high accuracy. The final average results show an accuracy of 93.90% as well as a reduction of 75% of the training time as compared to conventional deep learning and machine learning algorithms for EEG signal classification, also showing its prospects of the improvement of the performance of the BCI system. |
format | Online Article Text |
id | pubmed-10649020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106490202023-11-04 Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine Lyu, Songyang Cheung, Ray C. C. Sensors (Basel) Article The human brain can be seen as one of the most powerful processors in the world, and it has a very complex structure with different kinds of signals for monitoring organics, communicating to neurons, and reacting to different information, which allows large developments in observing human sleeping, revealing diseases, reflecting certain motivations of limbs, and other applications. Relative theory, algorithms, and applications also help us to build brain-computer interface (BCI) systems for different powerful functions. Therefore, we present a fast-reaction framework based on an extreme learning machine (ELM) with multiple layers for the ElectroEncephaloGram (EEG) signals classification in motor imagery, showing the advantages in both accuracy of classification and training speed compared with conventional machine learning methods. The experiments are performed on software with the dataset of BCI Competition II with fast training time and high accuracy. The final average results show an accuracy of 93.90% as well as a reduction of 75% of the training time as compared to conventional deep learning and machine learning algorithms for EEG signal classification, also showing its prospects of the improvement of the performance of the BCI system. MDPI 2023-11-04 /pmc/articles/PMC10649020/ /pubmed/37960675 http://dx.doi.org/10.3390/s23218976 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lyu, Songyang Cheung, Ray C. C. Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title | Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title_full | Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title_fullStr | Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title_full_unstemmed | Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title_short | Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine |
title_sort | efficient multiple channels eeg signal classification based on hierarchical extreme learning machine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649020/ https://www.ncbi.nlm.nih.gov/pubmed/37960675 http://dx.doi.org/10.3390/s23218976 |
work_keys_str_mv | AT lyusongyang efficientmultiplechannelseegsignalclassificationbasedonhierarchicalextremelearningmachine AT cheungraycc efficientmultiplechannelseegsignalclassificationbasedonhierarchicalextremelearningmachine |