Cargando…
Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine
The human brain can be seen as one of the most powerful processors in the world, and it has a very complex structure with different kinds of signals for monitoring organics, communicating to neurons, and reacting to different information, which allows large developments in observing human sleeping,...
Autores principales: | Lyu, Songyang, Cheung, Ray C. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649020/ https://www.ncbi.nlm.nih.gov/pubmed/37960675 http://dx.doi.org/10.3390/s23218976 |
Ejemplares similares
-
Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine
por: Lyu, Songyang, et al.
Publicado: (2023) -
Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2022) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014) -
Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition
por: Zhang, Xiongtao, et al.
Publicado: (2023)