Cargando…

Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling

The receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous s...

Descripción completa

Detalles Bibliográficos
Autores principales: Curtis, Katrina L., Homer, Kyle M., Wendt, Ryan A., Stapley, Brendan M., Clark, Evan T., Harward, Kaden, Chang, Ashley, Clarke, Derek M., Arroyo, Juan A., Reynolds, Paul R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649034/
https://www.ncbi.nlm.nih.gov/pubmed/37958629
http://dx.doi.org/10.3390/ijms242115645
_version_ 1785135474405277696
author Curtis, Katrina L.
Homer, Kyle M.
Wendt, Ryan A.
Stapley, Brendan M.
Clark, Evan T.
Harward, Kaden
Chang, Ashley
Clarke, Derek M.
Arroyo, Juan A.
Reynolds, Paul R.
author_facet Curtis, Katrina L.
Homer, Kyle M.
Wendt, Ryan A.
Stapley, Brendan M.
Clark, Evan T.
Harward, Kaden
Chang, Ashley
Clarke, Derek M.
Arroyo, Juan A.
Reynolds, Paul R.
author_sort Curtis, Katrina L.
collection PubMed
description The receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous studies demonstrated an inflammatory role for RAGE following acute 30-day exposure to secondhand smoke (SHS), wherein immune cell diapedesis and cytokine/chemokine secretion were accentuated in part via RAGE signaling. However, the chronic inflammatory mechanisms associated with RAGE have yet to be fully elucidated. In this study, we address the impact of long-term SHS exposure on RAGE signaling. RAGE knockout (RKO) and wild-type (WT) mice were exposed to SHS using a nose-only delivery system (Scireq Scientific, Montreal, Canada) for six months. SHS-exposed animals were compared to mice exposed to room air (RA) only. Immunoblotting was used to assess the phospho-AKT and phospho-ERK activation data, and colorimetric high-throughput assays were used to measure NF-kB. Ras activation was measured via ELISAs. Bronchoalveolar lavage fluid (BALF) cellularity was quantified, and a mouse cytokine antibody array was used to screen the secreted cytokines. The phospho-AKT level was decreased, while those of phospho-ERK, NF-kB, and Ras were elevated in both groups of SHS-exposed mice, with the RKO + SHS-exposed mice demonstrating significantly decreased levels of each intermediate compared to those of the WT + SHS-exposed mice. The BALF contained increased levels of diverse pro-inflammatory cytokines in the SHS-exposed WT mice, and diminished secretion was detected in the SHS-exposed RKO mice. These results validate the role for RAGE in the mediation of chronic pulmonary inflammatory responses and suggest ERK signaling as a likely pathway that perpetuates RAGE-dependent inflammation. Additional characterization of RAGE-mediated pulmonary responses to prolonged exposure will provide a valuable insight into the cellular mechanisms of lung diseases such as chronic obstructive pulmonary disease.
format Online
Article
Text
id pubmed-10649034
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106490342023-10-27 Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling Curtis, Katrina L. Homer, Kyle M. Wendt, Ryan A. Stapley, Brendan M. Clark, Evan T. Harward, Kaden Chang, Ashley Clarke, Derek M. Arroyo, Juan A. Reynolds, Paul R. Int J Mol Sci Article The receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous studies demonstrated an inflammatory role for RAGE following acute 30-day exposure to secondhand smoke (SHS), wherein immune cell diapedesis and cytokine/chemokine secretion were accentuated in part via RAGE signaling. However, the chronic inflammatory mechanisms associated with RAGE have yet to be fully elucidated. In this study, we address the impact of long-term SHS exposure on RAGE signaling. RAGE knockout (RKO) and wild-type (WT) mice were exposed to SHS using a nose-only delivery system (Scireq Scientific, Montreal, Canada) for six months. SHS-exposed animals were compared to mice exposed to room air (RA) only. Immunoblotting was used to assess the phospho-AKT and phospho-ERK activation data, and colorimetric high-throughput assays were used to measure NF-kB. Ras activation was measured via ELISAs. Bronchoalveolar lavage fluid (BALF) cellularity was quantified, and a mouse cytokine antibody array was used to screen the secreted cytokines. The phospho-AKT level was decreased, while those of phospho-ERK, NF-kB, and Ras were elevated in both groups of SHS-exposed mice, with the RKO + SHS-exposed mice demonstrating significantly decreased levels of each intermediate compared to those of the WT + SHS-exposed mice. The BALF contained increased levels of diverse pro-inflammatory cytokines in the SHS-exposed WT mice, and diminished secretion was detected in the SHS-exposed RKO mice. These results validate the role for RAGE in the mediation of chronic pulmonary inflammatory responses and suggest ERK signaling as a likely pathway that perpetuates RAGE-dependent inflammation. Additional characterization of RAGE-mediated pulmonary responses to prolonged exposure will provide a valuable insight into the cellular mechanisms of lung diseases such as chronic obstructive pulmonary disease. MDPI 2023-10-27 /pmc/articles/PMC10649034/ /pubmed/37958629 http://dx.doi.org/10.3390/ijms242115645 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Curtis, Katrina L.
Homer, Kyle M.
Wendt, Ryan A.
Stapley, Brendan M.
Clark, Evan T.
Harward, Kaden
Chang, Ashley
Clarke, Derek M.
Arroyo, Juan A.
Reynolds, Paul R.
Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title_full Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title_fullStr Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title_full_unstemmed Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title_short Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling
title_sort inflammatory cytokine elaboration following secondhand smoke (shs) exposure is mediated in part by rage signaling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649034/
https://www.ncbi.nlm.nih.gov/pubmed/37958629
http://dx.doi.org/10.3390/ijms242115645
work_keys_str_mv AT curtiskatrinal inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT homerkylem inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT wendtryana inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT stapleybrendanm inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT clarkevant inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT harwardkaden inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT changashley inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT clarkederekm inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT arroyojuana inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling
AT reynoldspaulr inflammatorycytokineelaborationfollowingsecondhandsmokeshsexposureismediatedinpartbyragesignaling