Cargando…
Multi-Domain Rapid Enhancement Networks for Underwater Images
Images captured during marine engineering operations suffer from color distortion and low contrast. Underwater image enhancement helps to alleviate these problems. Many deep learning models can infer multi-source data, where images with different perspectives exist from multiple sources. To this end...
Autores principales: | Zhao, Longgang, Lee, Seok-Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649118/ https://www.ncbi.nlm.nih.gov/pubmed/37960682 http://dx.doi.org/10.3390/s23218983 |
Ejemplares similares
-
Cascading Multi-Hop Reservation and Transmission in Underwater Acoustic Sensor Networks
por: Lee, Jae-Won, et al.
Publicado: (2014) -
Deep Supervised Residual Dense Network for Underwater Image Enhancement
por: Han, Yanling, et al.
Publicado: (2021) -
Multi-scale fusion framework via retinex and transmittance optimization for underwater image enhancement
por: Li, Tie, et al.
Publicado: (2022) -
A Novel Underwater Image Enhancement Using Optimal Composite Backbone Network
por: Chen, Yuhan, et al.
Publicado: (2023) -
Underwater Distortion Target Recognition Network (UDTRNet) via Enhanced Image Features
por: Cai, Lei, et al.
Publicado: (2021)