Cargando…

Research on the Recognition and Tracking of Group-Housed Pigs’ Posture Based on Edge Computing

The existing algorithms for identifying and tracking pigs in barns generally have a large number of parameters, relatively complex networks and a high demand for computational resources, which are not suitable for deployment in embedded-edge nodes on farms. A lightweight multi-objective identificati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zha, Wenwen, Li, Hualong, Wu, Guodong, Zhang, Liping, Pan, Weihao, Gu, Lichuan, Jiao, Jun, Zhang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649120/
https://www.ncbi.nlm.nih.gov/pubmed/37960652
http://dx.doi.org/10.3390/s23218952
Descripción
Sumario:The existing algorithms for identifying and tracking pigs in barns generally have a large number of parameters, relatively complex networks and a high demand for computational resources, which are not suitable for deployment in embedded-edge nodes on farms. A lightweight multi-objective identification and tracking algorithm based on improved YOLOv5s and DeepSort was developed for group-housed pigs in this study. The identification algorithm was optimized by: (i) using a dilated convolution in the YOLOv5s backbone network to reduce the number of model parameters and computational power requirements; (ii) adding a coordinate attention mechanism to improve the model precision; and (iii) pruning the BN layers to reduce the computational requirements. The optimized identification model was combined with DeepSort to form the final Tracking by Detecting algorithm and ported to a Jetson AGX Xavier edge computing node. The algorithm reduced the model size by 65.3% compared to the original YOLOv5s. The algorithm achieved a recognition precision of 96.6%; a tracking time of 46 ms; and a tracking frame rate of 21.7 FPS, and the precision of the tracking statistics was greater than 90%. The model size and performance met the requirements for stable real-time operation in embedded-edge computing nodes for monitoring group-housed pigs.