Cargando…
A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
A Brain–Computer Interface (BCI) is a medium for communication between the human brain and computers, which does not rely on other human neural tissues, but only decodes Electroencephalography (EEG) signals and converts them into commands to control external devices. Motor Imagery (MI) is an importa...
Autores principales: | Lun, Xiangmin, Zhang, Yifei, Zhu, Mengyang, Lian, Yongheng, Hou, Yimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649179/ https://www.ncbi.nlm.nih.gov/pubmed/37960592 http://dx.doi.org/10.3390/s23218893 |
Ejemplares similares
-
A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals
por: Lun, Xiangmin, et al.
Publicado: (2020) -
A Motor Imagery Signals Classification Method via the Difference of EEG Signals Between Left and Right Hemispheric Electrodes
por: Lun, Xiangmin, et al.
Publicado: (2022) -
Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models
por: Yang, Chia-Yen, et al.
Publicado: (2023) -
CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition
por: Rusnac, Ana-Luiza, et al.
Publicado: (2022) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022)