Cargando…
Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events
Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649184/ https://www.ncbi.nlm.nih.gov/pubmed/37960599 http://dx.doi.org/10.3390/s23218900 |
_version_ | 1785135508459880448 |
---|---|
author | Pasero, Eros Gaita, Fiorenzo Randazzo, Vincenzo Meynet, Pierre Cannata, Sergio Maury, Philippe Giustetto, Carla |
author_facet | Pasero, Eros Gaita, Fiorenzo Randazzo, Vincenzo Meynet, Pierre Cannata, Sergio Maury, Philippe Giustetto, Carla |
author_sort | Pasero, Eros |
collection | PubMed |
description | Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI algorithms to evaluate their ability to discriminate between subjects with and without documented life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features were measured independently by three expert cardiologists; then, the dataset was randomly divided into three subsets (training, validation, and testing). Five shallow neural networks were trained, validated, and tested to predict subject-specific class (non-event/event) using different subsets of ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks, and logistic regression were trained, validated, and tested directly on the scanned ECG images, without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the aforementioned scanned images. Classification metrics were evaluated by means of sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with SQTS. In particular, shallow neural networks’ processing features showed the best performance in identifying patients that will not suffer from a potentially lethal event. This could pave the way for refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives of young and otherwise healthy individuals. |
format | Online Article Text |
id | pubmed-10649184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106491842023-11-01 Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events Pasero, Eros Gaita, Fiorenzo Randazzo, Vincenzo Meynet, Pierre Cannata, Sergio Maury, Philippe Giustetto, Carla Sensors (Basel) Article Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI algorithms to evaluate their ability to discriminate between subjects with and without documented life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features were measured independently by three expert cardiologists; then, the dataset was randomly divided into three subsets (training, validation, and testing). Five shallow neural networks were trained, validated, and tested to predict subject-specific class (non-event/event) using different subsets of ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks, and logistic regression were trained, validated, and tested directly on the scanned ECG images, without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the aforementioned scanned images. Classification metrics were evaluated by means of sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with SQTS. In particular, shallow neural networks’ processing features showed the best performance in identifying patients that will not suffer from a potentially lethal event. This could pave the way for refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives of young and otherwise healthy individuals. MDPI 2023-11-01 /pmc/articles/PMC10649184/ /pubmed/37960599 http://dx.doi.org/10.3390/s23218900 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pasero, Eros Gaita, Fiorenzo Randazzo, Vincenzo Meynet, Pierre Cannata, Sergio Maury, Philippe Giustetto, Carla Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title | Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title_full | Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title_fullStr | Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title_full_unstemmed | Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title_short | Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events |
title_sort | artificial intelligence ecg analysis in patients with short qt syndrome to predict life-threatening arrhythmic events |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649184/ https://www.ncbi.nlm.nih.gov/pubmed/37960599 http://dx.doi.org/10.3390/s23218900 |
work_keys_str_mv | AT paseroeros artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT gaitafiorenzo artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT randazzovincenzo artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT meynetpierre artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT cannatasergio artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT mauryphilippe artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents AT giustettocarla artificialintelligenceecganalysisinpatientswithshortqtsyndrometopredictlifethreateningarrhythmicevents |