Cargando…
Luminescent Behavior of Sb(3+)-Activated Luminescent Metal Halide
Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the dev...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649199/ https://www.ncbi.nlm.nih.gov/pubmed/37947712 http://dx.doi.org/10.3390/nano13212867 |
Sumario: | Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the development of such materials. Recently, Sb(3+)-activated luminescent metal halide perovskite materials with low toxicity, high efficiency, broadband, large Stokes shift, and emission wavelengths covering the entire visible and near-infrared regions have been considered one of the most likely luminescent materials to replace lead halide perovskites. This review reviews the synthesis, luminescence mechanism, structure, and luminescence properties of the compounds. The basic luminescence properties of Sb(3+)-activated luminescent metal halide perovskites and their applications in WLED, electroluminescence LED, temperature sensing, optical anti-counterfeiting, and X-ray scintillators are introduced. Finally, the development prospects and challenges of Sb(3+)-activated luminescent metal halide perovskites are discussed. |
---|