Cargando…
Deep Learning for Genomics: From Early Neural Nets to Modern Large Language Models
The data explosion driven by advancements in genomic research, such as high-throughput sequencing techniques, is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in various fields such as vision, speec...
Autores principales: | Yue, Tianwei, Wang, Yuanxin, Zhang, Longxiang, Gu, Chunming, Xue, Haoru, Wang, Wenping, Lyu, Qi, Dun, Yujie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649223/ https://www.ncbi.nlm.nih.gov/pubmed/37958843 http://dx.doi.org/10.3390/ijms242115858 |
Ejemplares similares
-
Fine-tuning large neural language models for biomedical natural language processing
por: Tinn, Robert, et al.
Publicado: (2023) -
MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks
por: Yamabe, Masato, et al.
Publicado: (2019) -
DeepCompNet: A Novel Neural Net Model Compression Architecture
por: Mary Shanthi Rani, M., et al.
Publicado: (2022) -
Do neural nets learn statistical laws behind natural language?
por: Takahashi, Shuntaro, et al.
Publicado: (2017) -
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks
por: Wang, Hongyu, et al.
Publicado: (2020)