Cargando…
Segmentation of Brain Tumor Using a 3D Generative Adversarial Network
Images of brain tumors may only show up in a small subset of scans, so important details may be missed. Further, because labeling is typically a labor-intensive and time-consuming task, there are typically only a small number of medical imaging datasets available for analysis. The focus of this rese...
Autores principales: | Kalejahi, Behnam Kiani, Meshgini, Saeed, Danishvar, Sebelan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649332/ https://www.ncbi.nlm.nih.gov/pubmed/37958240 http://dx.doi.org/10.3390/diagnostics13213344 |
Ejemplares similares
-
Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification
por: Mutepfe, Freedom, et al.
Publicado: (2021) -
Automatic Liver Tumor Segmentation from CT Images Using Graph Convolutional Network
por: Khoshkhabar, Maryam, et al.
Publicado: (2023) -
A transformer-based generative adversarial network for brain tumor segmentation
por: Huang, Liqun, et al.
Publicado: (2022) -
Hippocampal subfields segmentation in brain MR images using generative adversarial networks
por: Shi, Yonggang, et al.
Publicado: (2019) -
Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach
por: Peivandi, Mohammad, et al.
Publicado: (2023)