Cargando…
Dark-Channel Soft-Constrained and Object-Perception-Enhanced Deep Dehazing Networks Used for Road Inspection Images
Haze seriously affects the visual quality of road inspection images and contaminates the discrimination of key road objects, which thus hinders the execution of road inspection work. The basic assumptions of the classical dark-channel prior are not suitable for road images containing light-colored l...
Autores principales: | Wu, Honglin, Gao, Tong, Ji, Zhenming, Song, Mou, Zhang, Lianzhen, Kong, Dezhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649428/ https://www.ncbi.nlm.nih.gov/pubmed/37960629 http://dx.doi.org/10.3390/s23218932 |
Ejemplares similares
-
A Multi-Scale Dehazing Network with Dark Channel Priors
por: Yang, Guoliang, et al.
Publicado: (2023) -
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
por: Chen, Jiahao, et al.
Publicado: (2020) -
Self-supervised zero-shot dehazing network based on dark channel prior
por: Xiao, Xinjie, et al.
Publicado: (2023) -
Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations
por: Dong, Tianyang, et al.
Publicado: (2019) -
Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing
por: Xu, Yijun, et al.
Publicado: (2023)