Cargando…
Optimizing Road Safety: Advancements in Lightweight YOLOv8 Models and GhostC2f Design for Real-Time Distracted Driving Detection
The rapid detection of distracted driving behaviors is crucial for enhancing road safety and preventing traffic accidents. Compared with the traditional methods of distracted-driving-behavior detection, the YOLOv8 model has been proven to possess powerful capabilities, enabling it to perceive global...
Autores principales: | Du, Yingjie, Liu, Xiaofeng, Yi, Yuwei, Wei, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649436/ https://www.ncbi.nlm.nih.gov/pubmed/37960543 http://dx.doi.org/10.3390/s23218844 |
Ejemplares similares
-
BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
por: Wang, Xueqiu, et al.
Publicado: (2023) -
Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection Method
por: Zhao, Haipeng, et al.
Publicado: (2020) -
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
Research on Fatigued-Driving Detection Method by Integrating Lightweight YOLOv5s and Facial 3D Keypoints
por: Ran, Xiansheng, et al.
Publicado: (2023) -
Model Lightweighting for Real-time Distraction Detection on Resource-Limited Devices
por: Wang, Jing, et al.
Publicado: (2022)