Cargando…

Recent Advances in Machine Learning for Network Automation in the O-RAN

The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamdan, Mutasem Q., Lee, Haeyoung, Triantafyllopoulou, Dionysia, Borralho, Rúben, Kose, Abdulkadir, Amiri, Esmaeil, Mulvey, David, Yu, Wenjuan, Zitouni, Rafik, Pozza, Riccardo, Hunt, Bernie, Bagheri, Hamidreza, Foh, Chuan Heng, Heliot, Fabien, Chen, Gaojie, Xiao, Pei, Wang, Ning, Tafazolli, Rahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649491/
https://www.ncbi.nlm.nih.gov/pubmed/37960490
http://dx.doi.org/10.3390/s23218792
_version_ 1785135572183941120
author Hamdan, Mutasem Q.
Lee, Haeyoung
Triantafyllopoulou, Dionysia
Borralho, Rúben
Kose, Abdulkadir
Amiri, Esmaeil
Mulvey, David
Yu, Wenjuan
Zitouni, Rafik
Pozza, Riccardo
Hunt, Bernie
Bagheri, Hamidreza
Foh, Chuan Heng
Heliot, Fabien
Chen, Gaojie
Xiao, Pei
Wang, Ning
Tafazolli, Rahim
author_facet Hamdan, Mutasem Q.
Lee, Haeyoung
Triantafyllopoulou, Dionysia
Borralho, Rúben
Kose, Abdulkadir
Amiri, Esmaeil
Mulvey, David
Yu, Wenjuan
Zitouni, Rafik
Pozza, Riccardo
Hunt, Bernie
Bagheri, Hamidreza
Foh, Chuan Heng
Heliot, Fabien
Chen, Gaojie
Xiao, Pei
Wang, Ning
Tafazolli, Rahim
author_sort Hamdan, Mutasem Q.
collection PubMed
description The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit.
format Online
Article
Text
id pubmed-10649491
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106494912023-10-28 Recent Advances in Machine Learning for Network Automation in the O-RAN Hamdan, Mutasem Q. Lee, Haeyoung Triantafyllopoulou, Dionysia Borralho, Rúben Kose, Abdulkadir Amiri, Esmaeil Mulvey, David Yu, Wenjuan Zitouni, Rafik Pozza, Riccardo Hunt, Bernie Bagheri, Hamidreza Foh, Chuan Heng Heliot, Fabien Chen, Gaojie Xiao, Pei Wang, Ning Tafazolli, Rahim Sensors (Basel) Article The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit. MDPI 2023-10-28 /pmc/articles/PMC10649491/ /pubmed/37960490 http://dx.doi.org/10.3390/s23218792 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hamdan, Mutasem Q.
Lee, Haeyoung
Triantafyllopoulou, Dionysia
Borralho, Rúben
Kose, Abdulkadir
Amiri, Esmaeil
Mulvey, David
Yu, Wenjuan
Zitouni, Rafik
Pozza, Riccardo
Hunt, Bernie
Bagheri, Hamidreza
Foh, Chuan Heng
Heliot, Fabien
Chen, Gaojie
Xiao, Pei
Wang, Ning
Tafazolli, Rahim
Recent Advances in Machine Learning for Network Automation in the O-RAN
title Recent Advances in Machine Learning for Network Automation in the O-RAN
title_full Recent Advances in Machine Learning for Network Automation in the O-RAN
title_fullStr Recent Advances in Machine Learning for Network Automation in the O-RAN
title_full_unstemmed Recent Advances in Machine Learning for Network Automation in the O-RAN
title_short Recent Advances in Machine Learning for Network Automation in the O-RAN
title_sort recent advances in machine learning for network automation in the o-ran
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649491/
https://www.ncbi.nlm.nih.gov/pubmed/37960490
http://dx.doi.org/10.3390/s23218792
work_keys_str_mv AT hamdanmutasemq recentadvancesinmachinelearningfornetworkautomationintheoran
AT leehaeyoung recentadvancesinmachinelearningfornetworkautomationintheoran
AT triantafyllopouloudionysia recentadvancesinmachinelearningfornetworkautomationintheoran
AT borralhoruben recentadvancesinmachinelearningfornetworkautomationintheoran
AT koseabdulkadir recentadvancesinmachinelearningfornetworkautomationintheoran
AT amiriesmaeil recentadvancesinmachinelearningfornetworkautomationintheoran
AT mulveydavid recentadvancesinmachinelearningfornetworkautomationintheoran
AT yuwenjuan recentadvancesinmachinelearningfornetworkautomationintheoran
AT zitounirafik recentadvancesinmachinelearningfornetworkautomationintheoran
AT pozzariccardo recentadvancesinmachinelearningfornetworkautomationintheoran
AT huntbernie recentadvancesinmachinelearningfornetworkautomationintheoran
AT bagherihamidreza recentadvancesinmachinelearningfornetworkautomationintheoran
AT fohchuanheng recentadvancesinmachinelearningfornetworkautomationintheoran
AT heliotfabien recentadvancesinmachinelearningfornetworkautomationintheoran
AT chengaojie recentadvancesinmachinelearningfornetworkautomationintheoran
AT xiaopei recentadvancesinmachinelearningfornetworkautomationintheoran
AT wangning recentadvancesinmachinelearningfornetworkautomationintheoran
AT tafazollirahim recentadvancesinmachinelearningfornetworkautomationintheoran