Cargando…
Recent Advances in Machine Learning for Network Automation in the O-RAN
The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor a...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649491/ https://www.ncbi.nlm.nih.gov/pubmed/37960490 http://dx.doi.org/10.3390/s23218792 |
_version_ | 1785135572183941120 |
---|---|
author | Hamdan, Mutasem Q. Lee, Haeyoung Triantafyllopoulou, Dionysia Borralho, Rúben Kose, Abdulkadir Amiri, Esmaeil Mulvey, David Yu, Wenjuan Zitouni, Rafik Pozza, Riccardo Hunt, Bernie Bagheri, Hamidreza Foh, Chuan Heng Heliot, Fabien Chen, Gaojie Xiao, Pei Wang, Ning Tafazolli, Rahim |
author_facet | Hamdan, Mutasem Q. Lee, Haeyoung Triantafyllopoulou, Dionysia Borralho, Rúben Kose, Abdulkadir Amiri, Esmaeil Mulvey, David Yu, Wenjuan Zitouni, Rafik Pozza, Riccardo Hunt, Bernie Bagheri, Hamidreza Foh, Chuan Heng Heliot, Fabien Chen, Gaojie Xiao, Pei Wang, Ning Tafazolli, Rahim |
author_sort | Hamdan, Mutasem Q. |
collection | PubMed |
description | The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit. |
format | Online Article Text |
id | pubmed-10649491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106494912023-10-28 Recent Advances in Machine Learning for Network Automation in the O-RAN Hamdan, Mutasem Q. Lee, Haeyoung Triantafyllopoulou, Dionysia Borralho, Rúben Kose, Abdulkadir Amiri, Esmaeil Mulvey, David Yu, Wenjuan Zitouni, Rafik Pozza, Riccardo Hunt, Bernie Bagheri, Hamidreza Foh, Chuan Heng Heliot, Fabien Chen, Gaojie Xiao, Pei Wang, Ning Tafazolli, Rahim Sensors (Basel) Article The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit. MDPI 2023-10-28 /pmc/articles/PMC10649491/ /pubmed/37960490 http://dx.doi.org/10.3390/s23218792 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hamdan, Mutasem Q. Lee, Haeyoung Triantafyllopoulou, Dionysia Borralho, Rúben Kose, Abdulkadir Amiri, Esmaeil Mulvey, David Yu, Wenjuan Zitouni, Rafik Pozza, Riccardo Hunt, Bernie Bagheri, Hamidreza Foh, Chuan Heng Heliot, Fabien Chen, Gaojie Xiao, Pei Wang, Ning Tafazolli, Rahim Recent Advances in Machine Learning for Network Automation in the O-RAN |
title | Recent Advances in Machine Learning for Network Automation in the O-RAN |
title_full | Recent Advances in Machine Learning for Network Automation in the O-RAN |
title_fullStr | Recent Advances in Machine Learning for Network Automation in the O-RAN |
title_full_unstemmed | Recent Advances in Machine Learning for Network Automation in the O-RAN |
title_short | Recent Advances in Machine Learning for Network Automation in the O-RAN |
title_sort | recent advances in machine learning for network automation in the o-ran |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649491/ https://www.ncbi.nlm.nih.gov/pubmed/37960490 http://dx.doi.org/10.3390/s23218792 |
work_keys_str_mv | AT hamdanmutasemq recentadvancesinmachinelearningfornetworkautomationintheoran AT leehaeyoung recentadvancesinmachinelearningfornetworkautomationintheoran AT triantafyllopouloudionysia recentadvancesinmachinelearningfornetworkautomationintheoran AT borralhoruben recentadvancesinmachinelearningfornetworkautomationintheoran AT koseabdulkadir recentadvancesinmachinelearningfornetworkautomationintheoran AT amiriesmaeil recentadvancesinmachinelearningfornetworkautomationintheoran AT mulveydavid recentadvancesinmachinelearningfornetworkautomationintheoran AT yuwenjuan recentadvancesinmachinelearningfornetworkautomationintheoran AT zitounirafik recentadvancesinmachinelearningfornetworkautomationintheoran AT pozzariccardo recentadvancesinmachinelearningfornetworkautomationintheoran AT huntbernie recentadvancesinmachinelearningfornetworkautomationintheoran AT bagherihamidreza recentadvancesinmachinelearningfornetworkautomationintheoran AT fohchuanheng recentadvancesinmachinelearningfornetworkautomationintheoran AT heliotfabien recentadvancesinmachinelearningfornetworkautomationintheoran AT chengaojie recentadvancesinmachinelearningfornetworkautomationintheoran AT xiaopei recentadvancesinmachinelearningfornetworkautomationintheoran AT wangning recentadvancesinmachinelearningfornetworkautomationintheoran AT tafazollirahim recentadvancesinmachinelearningfornetworkautomationintheoran |