Cargando…
An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM
For orbital angular momentum (OAM) recognition in atmosphere turbulence, how to design a self-adapted model is a challenging problem. To address this issue, an efficient deep learning framework that uses a derived extreme learning machine (ELM) has been put forward. Different from typical neural net...
Autores principales: | Yu, Haiyang, Chen, Chunyi, Hu, Xiaojuan, Yang, Huamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649547/ https://www.ncbi.nlm.nih.gov/pubmed/37960437 http://dx.doi.org/10.3390/s23218737 |
Ejemplares similares
-
Same Wavelength Noise Filtering via Quantum Orbital Angular Momentum Emission
por: Jia, Fan, et al.
Publicado: (2023) -
Orbital Angular Momentum Mode Sensing Technology Based on Intensity Interrogation
por: Huang, Churou, et al.
Publicado: (2022) -
Generation and detection of orbital angular momentum via metasurface
por: Jin, Jinjin, et al.
Publicado: (2016) -
Adaptive power-controllable orbital angular momentum (OAM) multicasting
por: Li, Shuhui, et al.
Publicado: (2015) -
Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
por: Lamilla, Erick, et al.
Publicado: (2023)