Cargando…
Proactive Fault Diagnosis of a Radiator: A Combination of Gaussian Mixture Model and LSTM Autoencoder
Radiator reliability is crucial in environments characterized by high temperatures and friction, where prompt interventions are often required to prevent system failures. This study introduces a proactive approach to radiator fault diagnosis, leveraging the integration of the Gaussian Mixture Model...
Autores principales: | Lee, Jeong-Geun, Kim, Deok-Hwan, Lee, Jang Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649564/ https://www.ncbi.nlm.nih.gov/pubmed/37960388 http://dx.doi.org/10.3390/s23218688 |
Ejemplares similares
-
Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers
por: Mallak, Ahlam, et al.
Publicado: (2021) -
Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection
por: Maliuk, Andrei S., et al.
Publicado: (2021) -
Proactive Fault Prediction of Fog Devices Using LSTM-CRP Conceptual Framework for IoT Applications
por: H, Sabireen, et al.
Publicado: (2023) -
A Convolutional Autoencoder Based Fault Diagnosis Method for a Hydraulic Solenoid Valve Considering Unknown Faults
por: Yoo, Seungjin, et al.
Publicado: (2023) -
Transformer fault diagnosis using continuous sparse autoencoder
por: Wang, Lukun, et al.
Publicado: (2016)