Cargando…

Review of Miniaturized Computational Spectrometers

Spectrometers are key instruments in diverse fields, notably in medical and biosensing applications. Recent advancements in nanophotonics and computational techniques have contributed to new spectrometer designs characterized by miniaturization and enhanced performance. This paper presents a compreh...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Qingze, Lim, Zi Heng, Sun, Haoyang, Chew, Jeremy Xuan Yu, Zhou, Guangya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649566/
https://www.ncbi.nlm.nih.gov/pubmed/37960467
http://dx.doi.org/10.3390/s23218768
Descripción
Sumario:Spectrometers are key instruments in diverse fields, notably in medical and biosensing applications. Recent advancements in nanophotonics and computational techniques have contributed to new spectrometer designs characterized by miniaturization and enhanced performance. This paper presents a comprehensive review of miniaturized computational spectrometers (MCS). We examine major MCS designs based on waveguides, random structures, nanowires, photonic crystals, and more. Additionally, we delve into computational methodologies that facilitate their operation, including compressive sensing and deep learning. We also compare various structural models and highlight their unique features. This review also emphasizes the growing applications of MCS in biosensing and consumer electronics and provides a thoughtful perspective on their future potential. Lastly, we discuss potential avenues for future research and applications.