Cargando…
Restoration of Binocular Images Degraded by Optical Scattering through Estimation of Atmospheric Coefficients
A binocular vision-based approach for the restoration of images captured in a scattering medium is presented. The scene depth is computed by triangulation using stereo matching. Next, the atmospheric parameters of the medium are determined with an introduced estimator based on the Monte Carlo method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649635/ https://www.ncbi.nlm.nih.gov/pubmed/37960616 http://dx.doi.org/10.3390/s23218918 |
Sumario: | A binocular vision-based approach for the restoration of images captured in a scattering medium is presented. The scene depth is computed by triangulation using stereo matching. Next, the atmospheric parameters of the medium are determined with an introduced estimator based on the Monte Carlo method. Finally, image restoration is performed using an atmospheric optics model. The proposed approach effectively suppresses optical scattering effects without introducing noticeable artifacts in processed images. The accuracy of the proposed approach in the estimation of atmospheric parameters and image restoration is evaluated using synthetic hazy images constructed from a well-known database. The practical viability of our approach is also confirmed through a real experiment for depth estimation, atmospheric parameter estimation, and image restoration in a scattering medium. The results highlight the applicability of our approach in computer vision applications in challenging atmospheric conditions. |
---|