Cargando…
SGN-YOLO: Detecting Wood Defects with Improved YOLOv5 Based on Semi-Global Network
Object detection based on wood defects involves using bounding boxes to label defects in the surface image of the wood. This step is crucial before the transformation of wood products. Due to the small size and diverse shape of wood defects, most previous object detection models are unable to filter...
Autores principales: | Meng, Wei, Yuan, Yilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649724/ https://www.ncbi.nlm.nih.gov/pubmed/37960405 http://dx.doi.org/10.3390/s23218705 |
Ejemplares similares
-
MR-YOLO: An Improved YOLOv5 Network for Detecting Magnetic Ring Surface Defects
por: Lang, Xianli, et al.
Publicado: (2022) -
MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface
por: Guo, Zexuan, et al.
Publicado: (2022) -
Platelet Detection Based on Improved YOLO_v3
por: Liu, Renting, et al.
Publicado: (2022) -
CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism
por: Appe, Seetharam Nagesh, et al.
Publicado: (2023) -
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)
por: Soeb, Md. Janibul Alam, et al.
Publicado: (2023)