Cargando…

Development of Plug Joint with Polymer-Modified Rubber Asphalt as Filling Material

Rising traffic volume, heavy loads, and construction activities have raised concerns about expansion joint device damage. This study focuses on developing an innovative expansion joint using polymer-modified rubber asphalt as the filling material to enhance its service life. Styrene–butadiene–styren...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyung-Nam, Kim, Yeong-Min, Le, Tri Ho Minh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649808/
https://www.ncbi.nlm.nih.gov/pubmed/37959936
http://dx.doi.org/10.3390/polym15214256
Descripción
Sumario:Rising traffic volume, heavy loads, and construction activities have raised concerns about expansion joint device damage. This study focuses on developing an innovative expansion joint using polymer-modified rubber asphalt as the filling material to enhance its service life. Styrene–butadiene–styrene (SBS) emerged as a suitable modifier for rubber-modified asphalt, significantly improving elasticity and adhesion. Through the strategic combination of 3- and 2-block linear SBS, the elasticity and adhesion properties were significantly improved, resulting in the formulation of a well-suited polymer-modified rubber asphalt binder. The developed asphalt binder exhibits impressive elastic recovery (61.1% to 66.1%), surpassing commercial products, with enhanced constructability and workability (15% to 21% viscosity reduction). The carefully engineered mastic asphalt mixture showcases self-leveling characteristics at a moderate 210 °C, addressing historical constructability challenges. Settlement is 40% less than traditional hot mix asphalt for surface layers, with improved moisture and stripping resistance, enhancing existing asphalt plug joint durability and workability. Collectively, this novel mixture, comprising polymer-modified rubber and mastic asphalt, showcases the potential to enhance the durability of existing asphalt plug joints while ensuring superior constructability and workability.