Cargando…

Hypofibrinogenemia following injury in 186 children and adolescents: identification of the phenotype, current outcomes, and potential for intervention

OBJECTIVES: Recent studies evaluating fibrinogen replacement in trauma, along with newly available fibrinogen-based products, has led to an increase in debate on where products such as cryoprecipitate belong in our resuscitation strategies. We set out to define the phenotype and outcomes of those wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerard, Justin, Van Gent, Jan-Michael, Cardenas, Jessica, Gage, Christian, Meyer, David E, Cox, Charles, Wade, Charles E, Cotton, Bryan A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649809/
https://www.ncbi.nlm.nih.gov/pubmed/38020863
http://dx.doi.org/10.1136/tsaco-2023-001108
Descripción
Sumario:OBJECTIVES: Recent studies evaluating fibrinogen replacement in trauma, along with newly available fibrinogen-based products, has led to an increase in debate on where products such as cryoprecipitate belong in our resuscitation strategies. We set out to define the phenotype and outcomes of those with hypofibrinogenemia and evaluate whether fibrinogen replacement should have a role in the initial administration of massive transfusion. METHODS: All patients <18 years of age presenting to our trauma center 11/17–4/21 were reviewed. We then evaluated all patients who received emergency-release and massive transfusion protocol (MTP) products. Patients were defined as hypofibrinogenemic (HYPOFIB) if admission fibrinogen <150 or rapid thrombelastography (r-TEG) angle <60 degrees. Our analysis sought to define risk factors for presenting with HYPOFIB, the impact on outcomes, and whether early replacement improved mortality. RESULTS: 4169 patients were entered into the trauma registry, with 926 level 1 trauma activations, of which 186 patients received emergency-release blood products during this time; 1%, 3%, and 10% were HYPOFIB, respectively. Of the 186 patients of interest, 18 were HYPOFIB and 168 were non-HYPOFIB. The HYPOFIB patients were significantly younger, had lower field and arrival Glasgow Coma Scale, had higher head Abbreviated Injury Scale, arrived with worse global coagulopathy, and died from brain injury. Non-HYPOFIB patients were more likely to have (+)focused assessment for the sonography of trauma on arrival, sustained severe abdominal injuries, and die from hemorrhage. 12% of patients who received early cryoprecipitate (0–2 hours) had higher mortality by univariate analysis (55% vs 31%, p=0.045), but no difference on multivariate analysis (OR 0.36, 95% CI 0.07 to 1.81, p=0.221). Those receiving early cryoprecipitate who survived after pediatric intensive care unit (PICU) admission had lower PICU fibrinogen and r-TEG alpha-angle values. CONCLUSION: In pediatric trauma, patients with hypofibrinogenemia on admission are most likely younger and to have sustained severe brain injury, with an associated mortality of over 80%. Given the absence of bleeding-related deaths in HYPOFIB patients, this study does not provide evidence for the empiric use of cryoprecipitate in the initial administration of a massive transfusion protocol. LEVEL OF EVIDENCE: Level III - Therapeutic/Care Management.