Cargando…
Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology
The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high...
Autores principales: | Xue, Zhengkun, Huang, Yukun, Zhang, Wanyang, Shi, Jinchuan, Luo, Huageng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649917/ https://www.ncbi.nlm.nih.gov/pubmed/37960468 http://dx.doi.org/10.3390/s23218767 |
Ejemplares similares
-
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
por: Chen, Xianglong, et al.
Publicado: (2016) -
GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction
por: Ding, Jiakai, et al.
Publicado: (2020) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022) -
A Rolling Bearing Fault Feature Extraction Algorithm Based on IPOA-VMD and MOMEDA
por: Yi, Kang, et al.
Publicado: (2023) -
Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing
por: Liang, Tao, et al.
Publicado: (2021)