Cargando…
A Generative Adversarial Network to Synthesize 3D Magnetohydrodynamic Distortions for Electrocardiogram Analyses Applied to Cardiac Magnetic Resonance Imaging
Recently, deep learning (DL) models have been increasingly adopted for automatic analyses of medical data, including electrocardiograms (ECGs). Large, available ECG datasets, generally of high quality, often lack specific distortions, which could be helpful for enhancing DL-based algorithms. Synthet...
Autores principales: | Mehri, Maroua, Calmon, Guillaume, Odille, Freddy, Oster, Julien, Lalande, Alain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649946/ https://www.ncbi.nlm.nih.gov/pubmed/37960391 http://dx.doi.org/10.3390/s23218691 |
Ejemplares similares
-
A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision
por: Mehri, Maroua, et al.
Publicado: (2023) -
Intra-MRI extraction of diagnostic electrocardiograms using dynamic feedback from carotidal magnetohydrodynamic voltages
por: Gregory, Thomas S, et al.
Publicado: (2016) -
Magnetohydrodynamics
por: Cowling, Thomas G
Publicado: (1957) -
Magnetohydrodynamics
por: Moreau, René
Publicado: (1990) -
Magnetohydrodynamics
por: Davidson, Peter A, et al.
Publicado: (2002)