Cargando…
High-Density Functional Near-Infrared Spectroscopy and Machine Learning for Visual Perception Quantification
The main application scenario for wearable sensors involves the generation of data and monitoring metrics. fNIRS (functional near-infrared spectroscopy) allows the nonintrusive monitoring of human visual perception. The quantification of visual perception by fNIRS facilitates applications in enginee...
Autores principales: | Xiao, Hongwei, Li, Zhao, Zhou, Yuting, Gao, Zhenhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650008/ https://www.ncbi.nlm.nih.gov/pubmed/37960396 http://dx.doi.org/10.3390/s23218696 |
Ejemplares similares
-
A Review of Machine Learning for Near-Infrared Spectroscopy
por: Zhang, Wenwen, et al.
Publicado: (2022) -
Near‐infrared spectroscopy for metabolite quantification and species identification
por: Aw, Wen C., et al.
Publicado: (2019) -
Near-Infrared Spectroscopy
and Machine Learning for
Accurate Dating of Historical Books
por: Coppola, Floriana, et al.
Publicado: (2023) -
Quantification of irrigated lesion morphology using near-infrared spectroscopy
por: Park, Soo Young, et al.
Publicado: (2021) -
Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
por: Afara, Isaac O., et al.
Publicado: (2020)