Cargando…
CFANet: Context Feature Fusion and Attention Mechanism Based Network for Small Target Segmentation in Medical Images
Medical image segmentation plays a crucial role in clinical diagnosis, treatment planning, and disease monitoring. The automatic segmentation method based on deep learning has developed rapidly, with segmentation results comparable to clinical experts for large objects, but the segmentation accuracy...
Autores principales: | Cao, Ruifen, Ning, Long, Zhou, Chao, Wei, Pijing, Ding, Yun, Tan, Dayu, Zheng, Chunhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650041/ https://www.ncbi.nlm.nih.gov/pubmed/37960438 http://dx.doi.org/10.3390/s23218739 |
Ejemplares similares
-
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion
por: Cao, Ruifen, et al.
Publicado: (2021) -
Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning
por: Cao, Ruifen, et al.
Publicado: (2021) -
PCF-Net: Position and context information fusion attention convolutional neural network for skin lesion segmentation
por: Jiang, Yun, et al.
Publicado: (2023) -
MLCA2F: Multi-Level Context Attentional Feature Fusion for COVID-19 lesion segmentation from CT scans
por: Bakkouri, Ibtissam, et al.
Publicado: (2022)