Cargando…
Detection of Drowsiness among Drivers Using Novel Deep Convolutional Neural Network Model
Detecting drowsiness among drivers is critical for ensuring road safety and preventing accidents caused by drowsy or fatigued driving. Research on yawn detection among drivers has great significance in improving traffic safety. Although various studies have taken place where deep learning-based appr...
Autores principales: | Majeed, Fiaz, Shafique, Umair, Safran, Mejdl, Alfarhood, Sultan, Ashraf, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650052/ https://www.ncbi.nlm.nih.gov/pubmed/37960441 http://dx.doi.org/10.3390/s23218741 |
Ejemplares similares
-
Efficient Classification of ECG Images Using a Lightweight CNN with Attention Module and IoT
por: Sadad, Tariq, et al.
Publicado: (2023) -
A Meta Modeling-Based Interoperability and Integration Testing Platform for IoT Systems
por: Shah, Qasim Ali, et al.
Publicado: (2023) -
Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network
por: Zhu, Miankuan, et al.
Publicado: (2021) -
Convolutional Neural Network for Drowsiness Detection Using EEG Signals
por: Chaabene, Siwar, et al.
Publicado: (2021) -
Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time
por: Islam, Md. Reazul, et al.
Publicado: (2023)