Cargando…
Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks
Modeling and simulation of complex non-linear systems are essential in physics, engineering, and signal processing. Neural networks are widely regarded for such tasks due to their ability to learn complex representations from data. Training deep neural networks traditionally requires large amounts o...
Autores principales: | Vemuri, Sai Karthikeya, Denzler, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650063/ https://www.ncbi.nlm.nih.gov/pubmed/37960365 http://dx.doi.org/10.3390/s23218665 |
Ejemplares similares
-
Combining multi-objective genetic algorithm and neural network dynamically for the complex optimization problems in physics
por: Wang, Peilin, et al.
Publicado: (2023) -
Comparing Object Recognition in Humans and Deep Convolutional Neural Networks—An Eye Tracking Study
por: van Dyck, Leonard Elia, et al.
Publicado: (2021) -
Multi-objective hyperparameter optimization on gradient-boosting for breast cancer detection
por: Singh, Priya, et al.
Publicado: (2023) -
ECG data compression using a neural network model based on multi-objective optimization
por: Zhang, Bo, et al.
Publicado: (2017) -
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
por: Gülcü, Ayla, et al.
Publicado: (2021)