Cargando…
Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research
Aim: Method: This research presents a model combining machine learning (ML) techniques and eXplainable artificial intelligence (XAI) to predict breast cancer (BC) metastasis and reveal important genomic biomarkers in metastasis patients. Method: A total of 98 primary BC samples was analyzed, compris...
Autores principales: | Yagin, Burak, Yagin, Fatma Hilal, Colak, Cemil, Inceoglu, Feyza, Kadry, Seifedine, Kim, Jungeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650093/ https://www.ncbi.nlm.nih.gov/pubmed/37958210 http://dx.doi.org/10.3390/diagnostics13213314 |
Ejemplares similares
-
Explainable artificial intelligence model for identifying COVID-19 gene biomarkers
por: Yagin, Fatma Hilal, et al.
Publicado: (2023) -
Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence
por: Akbulut, Sami, et al.
Publicado: (2023) -
A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients
por: Yagin, Fatma Hilal, et al.
Publicado: (2023) -
An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
por: Bellantuono, Loredana, et al.
Publicado: (2023) -
An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease
por: Amoroso, Nicola, et al.
Publicado: (2023)