Cargando…
Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends
Environmental effects may lead to cracking, stiffness loss, brace damage, and other damages in bridges, frame structures, buildings, etc. Structural Health Monitoring (SHM) technology could prevent catastrophic events by detecting damage early. In recent years, Deep Learning (DL) has developed rapid...
Autores principales: | Jia, Jing, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650096/ https://www.ncbi.nlm.nih.gov/pubmed/37960524 http://dx.doi.org/10.3390/s23218824 |
Ejemplares similares
-
An Overview of Deep Learning Algorithms and Their Applications in Neuropsychiatry
por: Guney, Gokhan, et al.
Publicado: (2021) -
Application of Deep Learning Algorithm to Monitor Upper Extremity Task Practice
por: Li, Mingqi, et al.
Publicado: (2023) -
Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges
por: Banaee, Hadi, et al.
Publicado: (2013) -
Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends
por: Uppamma, Posham, et al.
Publicado: (2023) -
Rise of Deep Learning Clinical Applications and Challenges in Omics Data: A Systematic Review
por: Mohammed, Mazin Abed, et al.
Publicado: (2023)