Cargando…

Identification of the Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Family Involved in the Adaptation of Tetragonia tetragonoides (Pall.) Kuntze to Saline–Alkaline and Drought Habitats

Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic stressors that significantly af...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hao, Ding, Qianqian, Cao, Lisha, Huang, Zengwang, Wang, Zhengfeng, Zhang, Mei, Jian, Shuguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650104/
https://www.ncbi.nlm.nih.gov/pubmed/37958798
http://dx.doi.org/10.3390/ijms242115815
Descripción
Sumario:Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides’ responses to saline–alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution.