Cargando…
Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps
Previously, the analysis of atomic force microscopy (AFM) images allowed us to distinguish normal from cancerous/precancerous human epithelial cervical cells using only the fractal dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell surface were used in that stud...
Autores principales: | Petrov, Mikhail, Sokolov, Igor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650179/ https://www.ncbi.nlm.nih.gov/pubmed/37947614 http://dx.doi.org/10.3390/cells12212536 |
Ejemplares similares
-
Identification of Geometrical Features of Cell Surface Responsible for Cancer Aggressiveness: Machine Learning Analysis of Atomic Force Microscopy Images of Human Colorectal Epithelial Cells
por: Petrov, Mikhail, et al.
Publicado: (2023) -
AFM Detects Differences in the Surface Brush of Normal and Cancerous Cervical Cells
por: Iyer, S., et al.
Publicado: (2009) -
The Immunohistochemical Expression of Epithelial–Mesenchymal Transition Markers in Precancerous Lesions and Cervical Cancer
por: Popiel-Kopaczyk, Aneta, et al.
Publicado: (2023) -
Cervical cell lift: A novel triage method for the spatial mapping and grading of precancerous cervical lesions
por: Shiraz, Aslam, et al.
Publicado: (2022) -
Gastric epithelial histology and precancerous conditions
por: Yang, Hang, et al.
Publicado: (2022)