Cargando…
Understanding Coke Deposition Vis-à-Vis DRM Activity over Magnesia-Alumina Supported Ni-Fe, Ni-Co, Ni-Ce, and Ni-Sr Catalysts
The catalytic conversion of CH(4) and CO(2) into H(2)-rich syngas is known as the dry reforming of methane (DRM). The dissociation of CH(4) over active sites, coupled with the oxidation or polymerization of CH(4−x) (x = 1–4), plays a crucial role in determining in determining the DRM product yield a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650252/ https://www.ncbi.nlm.nih.gov/pubmed/37947719 http://dx.doi.org/10.3390/nano13212874 |
Sumario: | The catalytic conversion of CH(4) and CO(2) into H(2)-rich syngas is known as the dry reforming of methane (DRM). The dissociation of CH(4) over active sites, coupled with the oxidation or polymerization of CH(4−x) (x = 1–4), plays a crucial role in determining in determining the DRM product yield and coke deposition. Herein, a series of bimetallic-supported catalysts are prepared by the dispersion of Ni-M (M = Ce, Co, Fe, and Sr) over 60 wt% MgO-40 wt% Al(2)O(3) (60Mg40Al) support. Catalysts are tested for DRM and characterized with XRD, surface area and porosity, temperature-programmed reduction/desorption, UV−VIS−Raman spectroscopy, and thermogravimetry. 2.5Ni2.5Sr/60Mg40Al and 2.5Ni2.5Fe/60Mg40Al, and 2.5Ni2.5Ce/60Mg40Al and 2.5Ni2.5Co/60Mg40Al have similar CO(2) interaction profiles. The 2.5Ni2.5Sr/60Mg40Al catalyst nurtures inert-type coke, whereas 2.5Ni2.5Fe/60Mg40Al accelerates the deposition of huge coke, which results in catalytic inferiority. The higher activity over 2.5Ni2.5Ce/60Mg40Al is due to the instant lattice oxygen-endowing capacity for oxidizing coke. Retaining a high DRM activity (54% H(2)-yield) up to 24 h even against a huge coke deposition (weight loss 46%) over 2.5Ni2.5Co/60Mg40Al is due to the timely diffusion of coke far from the active sites or the mounting of active sites over the carbon nanotube. |
---|