Cargando…
Fabry–Perot Cavity Optimization for Absolute Strain Sensing Using Finite Element Analysis
The finite element method (FEM) was used to investigate the optical–mechanical behavior of a Fabry–Perot Interferometer (FPI) composed of a capillary segment spliced between two sections of standard optical fiber. The developed FEM model was validated by comparing it with theory and with previously...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650297/ https://www.ncbi.nlm.nih.gov/pubmed/37960484 http://dx.doi.org/10.3390/s23218785 |
Sumario: | The finite element method (FEM) was used to investigate the optical–mechanical behavior of a Fabry–Perot Interferometer (FPI) composed of a capillary segment spliced between two sections of standard optical fiber. The developed FEM model was validated by comparing it with theory and with previously published experimental data. The model was then used to show that the absolute strain on the host substrate is usually smaller than the strain measurement obtained with the sensor. Finally, the FEM model was used to propose a cavity geometry that can be produced with repeatability and that yields the correct absolute strain experienced by the host substrate, without requiring previous strain calibration. |
---|