Cargando…
Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics
In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal sto...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650323/ https://www.ncbi.nlm.nih.gov/pubmed/37959497 http://dx.doi.org/10.3390/ma16216900 |
_version_ | 1785135754924523520 |
---|---|
author | Wang, Qi Fang, Minghao Min, Xin Du, Pengpeng Huang, Zhaohui Liu, Yangai Wu, Xiaowen Liu, Yulin Liu, Changmiao Huang, Feihui |
author_facet | Wang, Qi Fang, Minghao Min, Xin Du, Pengpeng Huang, Zhaohui Liu, Yangai Wu, Xiaowen Liu, Yulin Liu, Changmiao Huang, Feihui |
author_sort | Wang, Qi |
collection | PubMed |
description | In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application. In this study, we propose a method for preparing ferric-rich and high specific storage capacity by adding Fe(2)O(3) powder to bauxite tailings. Based on a 7:3 mass ratio of bauxite tailings to lepidolite, Fe(2)O(3) powder with different mass fractions (7 wt%, 15 wt%, 20 wt%, 30 wt%, and 40 wt%) was added to the ceramic material to improve the physical properties and thermal storage capacity of thermal storage ceramics. The results showed that ferric-rich thermal storage ceramics with optimal performance were obtained by holding them at a sintering temperature of 1000 °C for 2 h. When the Fe(2)O(3) content was 15 wt%, the bulk density of the thermal storage ceramic reached 2.53 g/cm(3), the compressive strength was 120.81 MPa, and the specific heat capacity was 1.06 J/(g·K). This study has practical guidance significance in the preparation of high thermal storage ceramics at low temperatures and low costs. |
format | Online Article Text |
id | pubmed-10650323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106503232023-10-27 Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics Wang, Qi Fang, Minghao Min, Xin Du, Pengpeng Huang, Zhaohui Liu, Yangai Wu, Xiaowen Liu, Yulin Liu, Changmiao Huang, Feihui Materials (Basel) Article In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application. In this study, we propose a method for preparing ferric-rich and high specific storage capacity by adding Fe(2)O(3) powder to bauxite tailings. Based on a 7:3 mass ratio of bauxite tailings to lepidolite, Fe(2)O(3) powder with different mass fractions (7 wt%, 15 wt%, 20 wt%, 30 wt%, and 40 wt%) was added to the ceramic material to improve the physical properties and thermal storage capacity of thermal storage ceramics. The results showed that ferric-rich thermal storage ceramics with optimal performance were obtained by holding them at a sintering temperature of 1000 °C for 2 h. When the Fe(2)O(3) content was 15 wt%, the bulk density of the thermal storage ceramic reached 2.53 g/cm(3), the compressive strength was 120.81 MPa, and the specific heat capacity was 1.06 J/(g·K). This study has practical guidance significance in the preparation of high thermal storage ceramics at low temperatures and low costs. MDPI 2023-10-27 /pmc/articles/PMC10650323/ /pubmed/37959497 http://dx.doi.org/10.3390/ma16216900 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Qi Fang, Minghao Min, Xin Du, Pengpeng Huang, Zhaohui Liu, Yangai Wu, Xiaowen Liu, Yulin Liu, Changmiao Huang, Feihui Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title | Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title_full | Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title_fullStr | Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title_full_unstemmed | Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title_short | Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics |
title_sort | preparation and performance of ferric-rich bauxite-tailing-based thermal storage ceramics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650323/ https://www.ncbi.nlm.nih.gov/pubmed/37959497 http://dx.doi.org/10.3390/ma16216900 |
work_keys_str_mv | AT wangqi preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT fangminghao preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT minxin preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT dupengpeng preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT huangzhaohui preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT liuyangai preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT wuxiaowen preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT liuyulin preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT liuchangmiao preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics AT huangfeihui preparationandperformanceofferricrichbauxitetailingbasedthermalstorageceramics |