Cargando…

CHP Engine Anomaly Detection Based on Parallel CNN-LSTM with Residual Blocks and Attention

The extreme operating environment of the combined heat and power (CHP) engine is likely to cause anomalies and defects, which can lead to engine failure; thus, detecting engine anomalies is essential. In this study, we propose a parallel convolutional neural network–long short-term memory (CNN-LSTM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Won Hee, Gu, Yeong Hyeon, Yoo, Seong Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650369/
https://www.ncbi.nlm.nih.gov/pubmed/37960445
http://dx.doi.org/10.3390/s23218746