Cargando…

The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation

Millions of people around the world rely on rice (Oryza sativa) for a significant portion of daily calories, but rice is a relatively poor source of essential micronutrients like iron and zinc. Rice has been shown to accumulate alarmingly high concentrations of toxic elements, such as cadmium. Cadmi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavarez, Michael, Grusak, Michael A., Sankaran, Renuka P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650392/
https://www.ncbi.nlm.nih.gov/pubmed/37959145
http://dx.doi.org/10.3390/foods12214026
_version_ 1785135770274627584
author Tavarez, Michael
Grusak, Michael A.
Sankaran, Renuka P.
author_facet Tavarez, Michael
Grusak, Michael A.
Sankaran, Renuka P.
author_sort Tavarez, Michael
collection PubMed
description Millions of people around the world rely on rice (Oryza sativa) for a significant portion of daily calories, but rice is a relatively poor source of essential micronutrients like iron and zinc. Rice has been shown to accumulate alarmingly high concentrations of toxic elements, such as cadmium. Cadmium in foods can lead to renal failure, bone mineral density loss, cancer, and significant neurotoxicological effects. Several strategies to limit cadmium and increase micronutrient density in staple food crops like rice have been explored, but even when cadmium concentrations are reduced by a management strategy, total cadmium levels in rice grain are an unreliable means of estimating human health risk because only a fraction of the minerals in grains are bioaccessible. The goal of this work was to assess the influence of cadmium and zinc supplied to plant roots on the bioaccessibility of cadmium and essential minerals from grains of three rice lines (GSOR 310546/low grain Cd, GSOR 311667/medium grain Cd, and GSOR 310428/high grain Cd) that differed in grain cadmium accumulation. Treatments consisted of 0 μM Cd + 2 μM Zn (c0z2), 1 μM Cd + 2 μM Zn (c1z2), or 1 μM Cd + 10 μM Zn (c1z10). Our results revealed that an increased grain cadmium concentration does not always correlate with increased cadmium bioaccessibility. Among the three rice lines tested, Cd bioaccessibility increased from 2.5% in grains from the c1z2 treatment to 17.7% in grains from the c1z10 treatment. Furthermore, Cd bioccessibility in the low-Cd-accumulating line was significantly higher than the high line in c1z10 treatment. Zinc bioaccessibility increased in the high-cadmium-accumulating line when cadmium was elevated in grains, and in the low-cadmium line when both cadmium and zinc were increased in the rice grains. Our results showed that both exogenous cadmium and elevated zinc treatments increased the bioaccessibility of other minerals from grains of the low- or high-grain cadmium lines of rice. Differences in mineral bioaccessibility were dependent on rice line. Calculations also showed that increased cadmium bioaccessibility correlated with increased risk of dietary exposure to consumers. Furthermore, our results suggest that zinc fertilization increased dietary exposure to cadmium in both high and low lines. This information can inform future experiments to analyze genotypic effects of mineral bioavailability from rice, with the goal of reducing cadmium absorption while simultaneously increasing zinc absorption from rice grains.
format Online
Article
Text
id pubmed-10650392
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106503922023-11-04 The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation Tavarez, Michael Grusak, Michael A. Sankaran, Renuka P. Foods Article Millions of people around the world rely on rice (Oryza sativa) for a significant portion of daily calories, but rice is a relatively poor source of essential micronutrients like iron and zinc. Rice has been shown to accumulate alarmingly high concentrations of toxic elements, such as cadmium. Cadmium in foods can lead to renal failure, bone mineral density loss, cancer, and significant neurotoxicological effects. Several strategies to limit cadmium and increase micronutrient density in staple food crops like rice have been explored, but even when cadmium concentrations are reduced by a management strategy, total cadmium levels in rice grain are an unreliable means of estimating human health risk because only a fraction of the minerals in grains are bioaccessible. The goal of this work was to assess the influence of cadmium and zinc supplied to plant roots on the bioaccessibility of cadmium and essential minerals from grains of three rice lines (GSOR 310546/low grain Cd, GSOR 311667/medium grain Cd, and GSOR 310428/high grain Cd) that differed in grain cadmium accumulation. Treatments consisted of 0 μM Cd + 2 μM Zn (c0z2), 1 μM Cd + 2 μM Zn (c1z2), or 1 μM Cd + 10 μM Zn (c1z10). Our results revealed that an increased grain cadmium concentration does not always correlate with increased cadmium bioaccessibility. Among the three rice lines tested, Cd bioaccessibility increased from 2.5% in grains from the c1z2 treatment to 17.7% in grains from the c1z10 treatment. Furthermore, Cd bioccessibility in the low-Cd-accumulating line was significantly higher than the high line in c1z10 treatment. Zinc bioaccessibility increased in the high-cadmium-accumulating line when cadmium was elevated in grains, and in the low-cadmium line when both cadmium and zinc were increased in the rice grains. Our results showed that both exogenous cadmium and elevated zinc treatments increased the bioaccessibility of other minerals from grains of the low- or high-grain cadmium lines of rice. Differences in mineral bioaccessibility were dependent on rice line. Calculations also showed that increased cadmium bioaccessibility correlated with increased risk of dietary exposure to consumers. Furthermore, our results suggest that zinc fertilization increased dietary exposure to cadmium in both high and low lines. This information can inform future experiments to analyze genotypic effects of mineral bioavailability from rice, with the goal of reducing cadmium absorption while simultaneously increasing zinc absorption from rice grains. MDPI 2023-11-04 /pmc/articles/PMC10650392/ /pubmed/37959145 http://dx.doi.org/10.3390/foods12214026 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tavarez, Michael
Grusak, Michael A.
Sankaran, Renuka P.
The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title_full The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title_fullStr The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title_full_unstemmed The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title_short The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
title_sort effect of exogenous cadmium and zinc applications on cadmium, zinc and essential mineral bioaccessibility in three lines of rice that differ in grain cadmium accumulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650392/
https://www.ncbi.nlm.nih.gov/pubmed/37959145
http://dx.doi.org/10.3390/foods12214026
work_keys_str_mv AT tavarezmichael theeffectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation
AT grusakmichaela theeffectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation
AT sankaranrenukap theeffectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation
AT tavarezmichael effectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation
AT grusakmichaela effectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation
AT sankaranrenukap effectofexogenouscadmiumandzincapplicationsoncadmiumzincandessentialmineralbioaccessibilityinthreelinesofricethatdifferingraincadmiumaccumulation