Cargando…

Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing

Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference betwe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Runqing, Su, Rui, Shen, Chenglin, Xiao, Ruizi, Cheng, Weiming, Miao, Xiangshui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650417/
https://www.ncbi.nlm.nih.gov/pubmed/37960537
http://dx.doi.org/10.3390/s23218838
_version_ 1785135776204324864
author Zhang, Runqing
Su, Rui
Shen, Chenglin
Xiao, Ruizi
Cheng, Weiming
Miao, Xiangshui
author_facet Zhang, Runqing
Su, Rui
Shen, Chenglin
Xiao, Ruizi
Cheng, Weiming
Miao, Xiangshui
author_sort Zhang, Runqing
collection PubMed
description Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference between the topological phases, the stable oxygen vacancy ordered structure, and the reversible topological phase transition promote the memristive effect, which is more conducive to its application in information storage, information processing, information calculation, and other related fields. In particular, extracting the current resistance or conductance of the two-terminal memristor to convert to the weight of the synapse in the neural network can simulate the behavior of biological synapses in their structure and function. In addition, in order to improve the performance of memristors and better apply them to neuromorphic computing, methods such as ion doping, electrode selection, interface modulation, and preparation process control have been demonstrated in memristors based on topological phase transition materials. At present, it is considered an effective method to obtain a unique resistive switching behavior by improving the process of preparing functional layers, regulating the crystal phase of topological phase transition materials, and constructing interface barrier-dependent devices. In this review, we systematically expound the resistance switching mechanism, resistance switching performance regulation, and neuromorphic computing of topological phase transition memristors, and provide some suggestions for the challenges faced by the development of the next generation of non-volatile memory and brain-like neuromorphic devices based on topological phase transition materials.
format Online
Article
Text
id pubmed-10650417
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106504172023-10-30 Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing Zhang, Runqing Su, Rui Shen, Chenglin Xiao, Ruizi Cheng, Weiming Miao, Xiangshui Sensors (Basel) Review Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference between the topological phases, the stable oxygen vacancy ordered structure, and the reversible topological phase transition promote the memristive effect, which is more conducive to its application in information storage, information processing, information calculation, and other related fields. In particular, extracting the current resistance or conductance of the two-terminal memristor to convert to the weight of the synapse in the neural network can simulate the behavior of biological synapses in their structure and function. In addition, in order to improve the performance of memristors and better apply them to neuromorphic computing, methods such as ion doping, electrode selection, interface modulation, and preparation process control have been demonstrated in memristors based on topological phase transition materials. At present, it is considered an effective method to obtain a unique resistive switching behavior by improving the process of preparing functional layers, regulating the crystal phase of topological phase transition materials, and constructing interface barrier-dependent devices. In this review, we systematically expound the resistance switching mechanism, resistance switching performance regulation, and neuromorphic computing of topological phase transition memristors, and provide some suggestions for the challenges faced by the development of the next generation of non-volatile memory and brain-like neuromorphic devices based on topological phase transition materials. MDPI 2023-10-30 /pmc/articles/PMC10650417/ /pubmed/37960537 http://dx.doi.org/10.3390/s23218838 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Zhang, Runqing
Su, Rui
Shen, Chenglin
Xiao, Ruizi
Cheng, Weiming
Miao, Xiangshui
Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title_full Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title_fullStr Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title_full_unstemmed Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title_short Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing
title_sort research progress on the application of topological phase transition materials in the field of memristor and neuromorphic computing
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650417/
https://www.ncbi.nlm.nih.gov/pubmed/37960537
http://dx.doi.org/10.3390/s23218838
work_keys_str_mv AT zhangrunqing researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing
AT surui researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing
AT shenchenglin researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing
AT xiaoruizi researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing
AT chengweiming researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing
AT miaoxiangshui researchprogressontheapplicationoftopologicalphasetransitionmaterialsinthefieldofmemristorandneuromorphiccomputing