Cargando…

Analysis of the Possibility of Using Selected Tools and Algorithms in the Classification and Recognition of Type of Microstructure

The aim of this research was to develop a solution based on existing methods and tools that would allow the automatic classification of selected images of cast iron microstructures. As part of the work, solutions based on artificial intelligence were tested and modified. Their task is to assign a sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Szatkowski, Michał, Wilk-Kołodziejczyk, Dorota, Jaśkowiec, Krzysztof, Małysza, Marcin, Bitka, Adam, Głowacki, Mirosław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650420/
https://www.ncbi.nlm.nih.gov/pubmed/37959434
http://dx.doi.org/10.3390/ma16216837
Descripción
Sumario:The aim of this research was to develop a solution based on existing methods and tools that would allow the automatic classification of selected images of cast iron microstructures. As part of the work, solutions based on artificial intelligence were tested and modified. Their task is to assign a specific class in the analyzed microstructure images. In the analyzed set, the examined samples appear in various zoom levels, photo sizes and colors. As is known, the components of the microstructure are different. In the examined photo, there does not have to be only one type of precipitate in each photo that indicates the correct microstructure of the same type of alloy, different shapes may appear in different amounts. This article also addresses the issue of data preparation. In order to isolate one type of structure element, the possibilities of using methods such as HOG (histogram of oriented gradients) and thresholding (the image was transformed into black objects on a white background) were checked. In order to avoid the slow preparation of training data, our solution was proposed to facilitate the labeling of data for training. The HOG algorithm combined with SVM and random forest were used for the classification process. In order to compare the effectiveness of the operation, the Faster R-CNN and Mask R-CNN algorithms were also used. The results obtained from the classifiers were compared to the microstructure assessment performed by experts.