Cargando…
L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions
LiDAR point clouds are significantly impacted by snow in driving scenarios, introducing scattered noise points and phantom objects, thereby compromising the perception capabilities of autonomous driving systems. Current effective methods for removing snow from point clouds largely rely on outlier fi...
Autores principales: | Zhang, Yuxiao, Ding, Ming, Yang, Hanting, Niu, Yingjie, Feng, Yan, Ohtani, Kento, Takeda, Kazuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650494/ https://www.ncbi.nlm.nih.gov/pubmed/37960360 http://dx.doi.org/10.3390/s23218660 |
Ejemplares similares
-
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
por: Lee, Jinho, et al.
Publicado: (2022) -
Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation
por: Bohak, Ciril, et al.
Publicado: (2020)