Cargando…
Long Short-Term Memory Neural Networks for Modeling Dynamical Processes and Predictive Control: A Hybrid Physics-Informed Approach
This work has two objectives. Firstly, it describes a novel physics-informed hybrid neural network (PIHNN) model based on the long short-term memory (LSTM) neural network. The presented model structure combines the first-principle process description and data-driven neural sub-models using a special...
Autores principales: | Zarzycki, Krzysztof, Ławryńczuk, Maciej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650555/ https://www.ncbi.nlm.nih.gov/pubmed/37960598 http://dx.doi.org/10.3390/s23218898 |
Ejemplares similares
-
LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
Fast Real-Time Model Predictive Control for a Ball-on-Plate Process
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
Forgery Cyber-Attack Supported by LSTM Neural Network: An Experimental Case Study
por: Zarzycki, Krzysztof, et al.
Publicado: (2023) -
Digital Twins in the Practice of High-Energy Physics Experiments: A Gas System for the Multipurpose Detector
por: Chaber, Patryk, et al.
Publicado: (2022) -
Computationally efficient model predictive control algorithms: a neural network approach
por: Ławryńczuk, Maciej
Publicado: (2014)