Cargando…
A High-Resolution Network with Strip Attention for Retinal Vessel Segmentation
Accurate segmentation of retinal vessels is an essential prerequisite for the subsequent analysis of fundus images. Recently, a number of methods based on deep learning have been proposed and shown to demonstrate promising segmentation performance, especially U-Net and its variants. However, tiny ve...
Autores principales: | Ye, Zhipin, Liu, Yingqian, Jing, Teng, He, Zhaoming, Zhou, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650600/ https://www.ncbi.nlm.nih.gov/pubmed/37960597 http://dx.doi.org/10.3390/s23218899 |
Ejemplares similares
-
Attention-guided cascaded network with pixel-importance-balance loss for retinal vessel segmentation
por: Su, Hexing, et al.
Publicado: (2023) -
RFARN: Retinal vessel segmentation based on reverse fusion attention residual network
por: Liu, Wenhuan, et al.
Publicado: (2021) -
MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation
por: Jiang, Yun, et al.
Publicado: (2021) -
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022) -
MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN
por: Jiang, Yun, et al.
Publicado: (2022)