Cargando…

Optical Properties of Amorphous Carbon Thin Films Fabricated Using a High-Energy-Impulse Magnetron-Sputtering Technique

This paper reports the results of amorphous carbon thin films fabricated by using the gas-impulse-injection magnetron-sputtering method and differing the accelerating voltage (1.0–1.4 kV). The obtained layers were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XRD), and spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Skowronski, Lukasz, Chodun, Rafal, Trzcinski, Marek, Zdunek, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650649/
https://www.ncbi.nlm.nih.gov/pubmed/37959647
http://dx.doi.org/10.3390/ma16217049
Descripción
Sumario:This paper reports the results of amorphous carbon thin films fabricated by using the gas-impulse-injection magnetron-sputtering method and differing the accelerating voltage (1.0–1.4 kV). The obtained layers were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XRD), and spectroscopic ellipsometry (SE). The analysis of the Raman and XPS spectra point to the significant content of sp(3) hybridization in the synthesized materials (above 54–73%). The refractive index of the films is very high—above 2.45 in the infrared spectral range. The band-gap energy (determined using the inversed-logarithmic-derivative method) depends on the discharging voltage and is in the range from 1.58 eV (785 nm) to 2.45 eV (506 nm). Based on the obtained results, we have elaborated a model explaining the a-C layers’ formation process.