Cargando…
DJAN: Deep Joint Adaptation Network for Wildlife Image Recognition
SIMPLE SUMMARY: Identifying wildlife species is crucial in various wildlife monitoring tasks. In this paper, a wildlife image recognition approach is implemented based on deep learning with a joint adaptation network. This paper presents a joint adversarial learning approach and a cross-domain local...
Autores principales: | Zhang, Changchun, Zhang, Junguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650680/ https://www.ncbi.nlm.nih.gov/pubmed/37958088 http://dx.doi.org/10.3390/ani13213333 |
Ejemplares similares
-
A Lightweight Automatic Wildlife Recognition Model Design Method Mitigating Shortcut Learning
por: Zhong, Yujie, et al.
Publicado: (2023) -
A Novel Hierarchical Coding Progressive Transmission Method for WMSN Wildlife Images
por: Feng, Wenzhao, et al.
Publicado: (2019) -
Image Object Recognition via Deep Feature-Based Adaptive Joint Sparse Representation
por: Wei, Wang, et al.
Publicado: (2019) -
Deep Joint Spatiotemporal Network (DJSTN) for Efficient Facial Expression Recognition
por: Jeong, Dami, et al.
Publicado: (2020) -
Deep Neural Network Recognition of Rivet Joint Defects in Aircraft Products
por: Amosov, Oleg Semenovich, et al.
Publicado: (2022)