Cargando…

Laser-Induced Graphene Formation on Polyimide Using UV to Mid-Infrared Laser Radiation

Our study presents laser-assisted methods to produce conductive graphene layers on the polymer surface. Specimens were treated using two different lasers at ambient and nitrogen atmospheres. A solid-state picosecond laser generating 355 nm, 532 nm, or 1064 nm wavelengths and a CO(2) laser generating...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiodorov, Vitalij, Trusovas, Romualdas, Mockus, Zenius, Ratautas, Karolis, Račiukaitis, Gediminas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650728/
https://www.ncbi.nlm.nih.gov/pubmed/37959913
http://dx.doi.org/10.3390/polym15214229
Descripción
Sumario:Our study presents laser-assisted methods to produce conductive graphene layers on the polymer surface. Specimens were treated using two different lasers at ambient and nitrogen atmospheres. A solid-state picosecond laser generating 355 nm, 532 nm, or 1064 nm wavelengths and a CO(2) laser generating mid-infrared 10.6 µm wavelength radiation operating in a pulsed regime were used in experiments. Sheet resistance measurements and microscopic analysis of treated sample surfaces were made. The chemical structure of laser-treated surfaces was investigated using Raman spectroscopy, and it showed the formation of high-quality few-layer graphene structures on the PI surface. The intensity ratios I(2D)/I(G) and I(D)/I(G) of samples treated with 1064 nm wavelength in nitrogen atmosphere were 0.81 and 0.46, respectively. After laser treatment, a conductive laser-induced graphene layer with a sheet resistance as low as 5 Ω was formed. Further, copper layers with a thickness of 3–10 µm were deposited on laser-formed graphene using a galvanic plating. The techniques of forming a conductive graphene layer on a polymer surface have a great perspective in many fields, especially in advanced electronic applications to fabricate copper tracks on 3D materials.