Cargando…
Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain
Developing new organic solvents to support the use of Li metal anodes in secondary batteries is an area of great interest. In particular, research is actively underway to improve battery performance by introducing fluorine to ether solvents, as these are highly compatible with Li metal anodes becaus...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650738/ https://www.ncbi.nlm.nih.gov/pubmed/37959592 http://dx.doi.org/10.3390/ma16216995 |
_version_ | 1785135849815408640 |
---|---|
author | Choi, Jihoon Shin, Kyoung-Hee Han, Young-Kyu |
author_facet | Choi, Jihoon Shin, Kyoung-Hee Han, Young-Kyu |
author_sort | Choi, Jihoon |
collection | PubMed |
description | Developing new organic solvents to support the use of Li metal anodes in secondary batteries is an area of great interest. In particular, research is actively underway to improve battery performance by introducing fluorine to ether solvents, as these are highly compatible with Li metal anodes because fluorine imparts high oxidative stability and relatively low Li-ion solvation ability. However, theoretical analysis of the solvation ability of organic solvents mostly focuses on the electron-withdrawing capability of fluorine. Herein, we analyze the effect of the structural characteristics of solvents on their Li(+) ion solvation ability from a computational chemistry perspective. We reveal that the structural constraints imposed on the oxygen binding sites in solvent molecules vary depending on the structural characteristics of the N-membered ring formed by the interaction between the organic solvent and Li(+) ions and the internal ring containing the oxygen binding sites. We demonstrate that the structural strain of the organic solvents has a comparable effect on Li(+) solvation ability seen for the electrical properties of fluorine elements. This work emphasizes the importance of understanding the structural characteristics and strain when attempting to understand the interactions between solvents and metal cations and effectively control the solvation ability of solvents. |
format | Online Article Text |
id | pubmed-10650738 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106507382023-10-31 Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain Choi, Jihoon Shin, Kyoung-Hee Han, Young-Kyu Materials (Basel) Article Developing new organic solvents to support the use of Li metal anodes in secondary batteries is an area of great interest. In particular, research is actively underway to improve battery performance by introducing fluorine to ether solvents, as these are highly compatible with Li metal anodes because fluorine imparts high oxidative stability and relatively low Li-ion solvation ability. However, theoretical analysis of the solvation ability of organic solvents mostly focuses on the electron-withdrawing capability of fluorine. Herein, we analyze the effect of the structural characteristics of solvents on their Li(+) ion solvation ability from a computational chemistry perspective. We reveal that the structural constraints imposed on the oxygen binding sites in solvent molecules vary depending on the structural characteristics of the N-membered ring formed by the interaction between the organic solvent and Li(+) ions and the internal ring containing the oxygen binding sites. We demonstrate that the structural strain of the organic solvents has a comparable effect on Li(+) solvation ability seen for the electrical properties of fluorine elements. This work emphasizes the importance of understanding the structural characteristics and strain when attempting to understand the interactions between solvents and metal cations and effectively control the solvation ability of solvents. MDPI 2023-10-31 /pmc/articles/PMC10650738/ /pubmed/37959592 http://dx.doi.org/10.3390/ma16216995 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choi, Jihoon Shin, Kyoung-Hee Han, Young-Kyu Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title | Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title_full | Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title_fullStr | Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title_full_unstemmed | Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title_short | Origin of Li(+) Solvation Ability of Electrolyte Solvent: Ring Strain |
title_sort | origin of li(+) solvation ability of electrolyte solvent: ring strain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650738/ https://www.ncbi.nlm.nih.gov/pubmed/37959592 http://dx.doi.org/10.3390/ma16216995 |
work_keys_str_mv | AT choijihoon originoflisolvationabilityofelectrolytesolventringstrain AT shinkyounghee originoflisolvationabilityofelectrolytesolventringstrain AT hanyoungkyu originoflisolvationabilityofelectrolytesolventringstrain |