Cargando…

Comprehensive Physicochemical Characterization, In Vitro Membrane Permeation, and In Vitro Human Skin Cell Culture of a Novel TOPK Inhibitor, HI-TOPK-032

Nonmelanoma skin cancers (NMSC) are the most common skin cancers, and about 5.4 million people are diagnosed each year in the United States. A newly developed T-lymphokine-activated killer cell-originated protein kinase (TOPK) inhibitor, HI-TOPK-032, is effective in suppressing colon cancer cell gro...

Descripción completa

Detalles Bibliográficos
Autores principales: Eedara, Basanth Babu, Manivannan, Bhagyashree, Alabsi, Wafaa, Sun, Bo, Curiel-Lewandrowski, Clara, Zhang, Tianshun, Bode, Ann M., Mansour, Heidi M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650786/
https://www.ncbi.nlm.nih.gov/pubmed/37958502
http://dx.doi.org/10.3390/ijms242115515
Descripción
Sumario:Nonmelanoma skin cancers (NMSC) are the most common skin cancers, and about 5.4 million people are diagnosed each year in the United States. A newly developed T-lymphokine-activated killer cell-originated protein kinase (TOPK) inhibitor, HI-TOPK-032, is effective in suppressing colon cancer cell growth, inducing the apoptosis of colon cancer cells and ultraviolet (UV) light-induced squamous cell carcinoma (SCC). This study aimed to investigate the physicochemical properties, permeation behavior, and cytotoxicity potential of HI-TOPK-032 prior to the development of a suitable topical formulation for targeted skin drug delivery. Techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), X-ray powder diffraction (XRPD), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and Fourier transform infrared microscopy were used to characterize HI-TOPK-032. The dose effect of HI-TOPK-032 on in vitro cell viability was evaluated using a 2D cell culture of the human skin keratinocyte cell line (HaCaT) and primary normal human epidermal keratinocytes (NHEKs). Transepithelial electrical resistance (TEER) at the air–liquid interface as a function of dose and time was measured on the HaCAT human skin cell line. The membrane permeation behavior of HI-TOPK-032 was tested using the Strat-M(®) synthetic biomimetic membrane with an in vitro Franz cell diffusion system. The physicochemical evaluation results confirmed the amorphous nature of the drug and the homogeneity of the sample with all characteristic chemical peaks. The in vitro cell viability assay results confirmed 100% cell viability up to 10 µM of HI-TOPK-032. Further, a rapid, specific, precise, and validated reverse phase-high performance liquid chromatography (RP-HPLC) method for the quantitative estimation of HI-TOPK-032 was developed. This is the first systematic and comprehensive characterization of HI-TOPK-032 and a report of these findings.